skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shalchi, Roya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Calcification is vital to marine organisms that produce calcium carbonate shells and skeletons. However, how calcification is impacted by ongoing environmental changes, including ocean acidification, remains incompletely understood due to complex relationships among the carbonate system variables hypothesized to drive calcification. Here, we experimentally decouple these drivers in an exploration of shell formation in adult marine mussels,Mytilus californianus. In contrast to models that focus on single parameters like calcium carbonate saturation state, our results implicate two independent factors, bicarbonate concentration and seawater pH, in governing calcification. While qualitatively similar to ideas embodied in the related substrate-inhibitor ratio (bicarbonate divided by hydrogen ion concentration), our data highlight that merging bicarbonate ion and hydrogen ion concentrations into a simple quotient obscures important features of calcification. Considering a dual-parameter framework improves mechanistic understanding of how calcifiers interact with complex and changing chemical conditions. 
    more » « less